
1A -AO82 423 CARNEGIE-MELLON UNIV PITTSBURGH PA MANAGEMENT SCIENC--ETC r/s 12/2
THlE NON CANDIDATE CONSTRAINT METHOD FOR REDUCING THE SIZE OF A --ETCIU)

UNCLASSIFIED MSRRG455 NL

00

4MCC

Carnegie -MellIon University
PITSUH. PENNSYVANI 15213

SCHOLOF INDUSIEDAL AD44TAION 'T)TIC
WIWM& LMUM~ MKW.FN, rot LECTEI

4,MAR 3 1 MW0

DISN STATEMELc4
Approved for Public releas%

pw DistriutOn Unlimited

60, 8 2-

V.452-79-80

V-U.

Management S~iencesiesearch Ze *.455

HE CNOAD ATE CONSTRAINT METHOD

FOR BDUCING THE SIZE OF A LINEAR PROGRAM d.

by

Awanti P./Sethi .-

I Gerald L. ,4 hompson .4(1~ J

MAI 3 11980

This report was prepared as part of the activities of the a Mn g
Research Group, Carnegie-Mellon University, under Contract A-7-!V
NR 047-048 with the Office of Naval Research. Reproduction in whole ai in
part is permitted for any purpose of the U.S. Government.

Management Sciences Research Group
Graduate School of Industrial Administration

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213 -

ATppro,.-Pd for putc .j.&
r

THE NON CANDIDATE CONSTRAINT METHOD

FOR REDUCING TNE SIZE OF A LINEAR PROGRAM

by

Awanti P. Sethi and Gerald L. Thompson

KJ) ABSTRACT

A non candidate constraint in a linear program is one which never

contains a pivot element during the course of solving the problem. Dis-

covering non candidate constraints is computationally costly since their

discovery, in general, depends on the actual sequence of pivots used. Know-

ing which constraints are non candidate is of great computational benefit since

they need not be kept in updated form. Our experience indicates that from

50 to 80 percent of the constraints in randomly problems are non candidates

at least part of the time.

In this paper we present a "learningP approach to the identification of

non candidate constraints. At each iteration we determine which constraints

can potentially be pivotal; these are candidate constraints and all others

are non candidate constraints on that step. On proceeding with the simplex

method we update only the candidate constraints. If a non candidate constraint

becomes candidate on a later step, we update it and add it to the candidate

list.

Although the constant checking of constraints to see whether they are

changing from being candidate to non candidate is computationally costly, we

obtain the computational benefit of having to keep in updated form a much

smaller tableau.

The net benefit of using this strategy is positive and results in a 25

to 50 percent reduction in total computation time. This paper describes the

method in detail and gives computational results of testing it on a series of

randomly generated problems.

= -

THE NON CANDIDATE CONSTRAINT METHOD

FOR REDUCING THE SIZE OF A LINEAR PROGRAM

by

Avanti P. Sethi and Gerald L. Thompson

1. Introduction.

Thompson, Tongse, and Zionts [4,6] defined a redundant constraint in

a linear programming problem as one which could be dropped without changing

the primal constraint set. Most linear programs have some redundant constraints,

and it would be desirable to be able to identify them. However, the discovery

of redundant constraints is computationally extremely costly.

A much weaker concept is that of a non-candidate constraint, to be defined

precisely in Section 2. Intuitively a permanently non-candidate constraint is

one which never becomes pivotal, that is, never contains a pivot element, during

the course of solving a given linear program. Such constraints may, but need

* not, be redundant in the strong sense of [4]. But they are never used during the

course of solving a problem, so that keeping them in updated form is of no value.

The discovery of permanently non candidate constraints is computationally

even more difficult than the discovery of redundant constraints, since, in

general, they depend on the choice of a specific sequence of pivots. However,

we have found that from 50 to 80 percent of the constraints in randomly generated

problems are sometimes non candidate constraints, see Section 4, so that their dis-

i! covery can be of great computational benefit.

In this paper we present a "learning" approach to the identification of

non candidate constraints. At each iteration we determine which constraints can

potentially be pivotal; these are the candidate constraints; all others are non

candidate constraints on that step. In proceeding with the simplex iterations

1<"

-2-

we update only candidate constraints, on the assumption that non candidate con-

straints on that step won't become candidates later. In case an error is made,

and a previously non candidate becomes a candidate constraint on a later itera-

tion, we update it, and add it to the candidate list.

Although the constant checking of constraints to see if they are changing

from being candidate to non candidate constraints or vice versa is costly, there

is the computational benefit of having a much smaller tableau to update at each

pivot. The net benefit of using this strategy is positive and results in 25-50

percent reduction in total computation time, see Section 4.

2. Basis for the Method.

The non candidate constraint method is merely a modification of the

standard simplex method, no new theoretical results are needed to establish the

correctness of the approach. In order to explain it we set up some standard

linear programming terminology.

Consider a linear prograuning problem stated form

Maximize fz - cx}

Subject to Ax - b (1)

x> 0

where A is mxn, b is mxl, c is lxn, and x is nxl. We assume slack

variables have been included in the definition of A, and that the problem has

been transformed (by well-known techniques) so that b > 0. The simplex tableau

at the kth iteration is denoted by

A| a(k) b (k)(2
c (k) (2)

"- - -. . . . - " " - - -. - n ,

.7 1...-...

where initially (

AM A, b (°) b, c (°) - -c, Z(°) 0. (3)

We define the following sets of indices

I = l,..,m}(4)

J - (l,...,n} (5)

J (k .fjIJ eJ sad c4 k) <'0) (6)

(k) b(k)
R(k) .(i i cIl and -i Minimum-' } (7)

(k) (k) (k)

'i ahj >O %hj

Clearly, J(k) is the set of indices of potential incoming variables at step

k, while R(k) is the set of potential outgoing rows if column J is chosen

to come in.

We can now define the set of candidate constraints at iteration k as

S(k) {i i Rk) for some J e(k)} (8)

The set of non candidate constraints at iteration (k) is then obviously

I- s(k) (9)

In this paper we will use the maximum objective change rule [3, 5]

which we will call the maximum z-change rule. To find it we calculate

(k)\
5(k) -Mim i 1 (k)~

iJ/)

and determine the indices of the incoming variable J and outgoing variable i

so that (1) holds and then

1\,,

j-, - . .. r,

I -4-

Z(k+l) .z(k) + (k)z * + •(k (11)

Although a large amount of time is needed to determine the pivot giving the

maximum z-change, a net improvement in computational performance has been

found when it is used to solve moderate sized problems [5]. In this paper

we will show that still further improvements can be obtained by using the maxi-

mum z-change rule in conjunction with the non candidate method.

By a partial pivot for a given choice of pivot row i and pivot column J,

we shall mean the calculation of the updated right hand sides b (k+ l) from

(k) (k+l)b) We will say that constraint i is violated if b i < 0. Because of

the choice of pivot row i by the minimum ratio rule (7) and (10), it is clear

that no non candidate constraint at step k is ever violated at step k+l that

is,

(k+l) ic~ (k) (2
bi > 0 for i e I - S (12)

However a constraint which is a non candidate at step k could be violated at

step k+2, k+3,....

In the non candidate method described in the next section, the simplex

tableau is updated at iteration k only for the constraints which are candidate

at iteration k. Since from 50 to 80 percent of all constraints in randomly

generated problems are non candidate, this results in considerable computational

savings, see Section 4

3. The Non Candidate Algorithm.

The flow chart for the non candidate simplex algorithm is shown in Figure 1.

The initialization steps of finding the set S(0) of candidate constraints and

the first maxinm z-change pivot are given in boxes 1 and 2. They can be completed

by making one pass through the original data of the problem. Step 3 is the pivot

, I

step which updates the rows of the simplex tableau restricted to the candidate

constraints. The rows corresponding to the non candidate constraints are not

updated. In box 4 a test is made to see if the current tableau is optimal; if

it is the algorithm stops; otherwise it continues.

In box 5 of Figure 1, the computer is instructed to make one pass through

the updated tableau at the kth step which is restricted to the rows in S(k)

during the data pass all non candidate constraints are removed from S(k) to

(k+l)
form the set S . During this data pass it is possible to also carry out

the instruction in box 6 of finding the maximum z-change pivot in the tableau

restricted to S(k+l)

In box 7, the computer is instructed to perform a partial pivot on b (k)

restricted to the set S(k+l) ; at the end of the partial pivot b (k+l) restricted

to the same set and hence x(k+ l) will be available. As instructed in box 8,

the proposed solution, x('~ l), is then substituted into the non candidate

constraints in the set I - S(k) to see if any of them is violated. If any

such constraint is found to be violated, the computer is instructed in box 9

to update that constraint, and then go to box 5 to try again to find a maximum

z-pivot and a new x) . This process is repeated until eventually a proposed

x (k+ l) will be found which does not violate any non candidate constraint. When

this happens, the computer goes from box 8 to box 10 where k is updated; and

from there it goes back to box 3 to continue with the pivoting process.

Since the algorithm outlined is simply a reorganization of the standard

simplex method, all of the anti-cycling techniques, and finiteness proofs for

the latter hold for the non candidate method as well.

4. Comutational Experience.

Table 1 gives the time comparison between the non candidate greatest

z-change method and the greatest z-change method in solving a series of 19

-6-

randomly generated problems with two different densities of problem data.

Since the same entry criterion was used in each method the sequence of pivots

was identical in each. Hence the differences in solution times can be attributed

entirely to the relative efficiencies of the two methods. We found that the non

candidate method is more effective on problems with higher density, and also on

larger problems.

Table 2 gives a computational comparison of the non candidate method and

the ordinary simplex method on two sets of randomly genr ated problems. Note

that the number of iterations is smaller for the non candidate method due

to its greatest z-change entry criterion. The ratio of times for the two methods

are close to the ratio of number of iterations, which indicates that the savings

in time from not updating non candidate constraints approximates the additional

time needed for the greatest z-change calculations.

We have so far not tried to compare the two methods on actual problems

derived from real applications. However, the results so far on these randomly

generated problems are very encouraging.

5. Variations and Extensions of the Method.

Many variants of the method described in this paper have occurred to us

which we have not yet had time to test. We discuss some of them here.

(a) Connections with the GUB Method. The generalized upper bound (GUB) [6]

method handles constraints which are sums of variables outside of the tableau.

Usually such GUB constraints are also non candidate in our sense. When they are

candidate constraints and are actually chosen to be pivotal, they are not re-

introduced into the tableau as we do; instead special pivoting rules are added

to the simplex algorithm. Perhaps such special pivoting rules could be extended

to more general kinds of constraints.A -

-7-

(b) Intermittent candidate checking. Instead of checking for candidate

constraints at each iteration as we do in box 5 of Figure 1, we could instead,

perform this check only once every sth iteration, s - 5, say, where the danger

is that a constraint could then become violated, and dual feasibility lost. This

could be corrected by performing some dual pivots. In this way the method could

become a kind of primal-dual algorithm. Only actual computational tests could

show whether, and for what values of s, this method would be good.

(c) Extension to large problems. Most large linear programming problems

are very sparse initially, but the tableau can fill in during the course of the

computation. Hence the non candidate method is a potentially valuable way of

keeping down the size of the working tableau, and/or the size of the basis inverse

matrix. The difficulty is in preforming the check for candidate constraints.

To this end we propose that the original data be stored on two tapes, once in

row order, and once in column order. Then the tape with row ordered data is

used to check for candidates, and the tape with column ordered data used to check

for incoming variables. We believe that the computations could be organized so

that both of these steps could be done efficiently. If the number of candidate

constraints is as small as we found in Table 2, then dramatic improvements in

the solution of large linear programs might be possible using this method.

6. Conclusions.

In this paper we have defined the concept of candidate and non candidate

constraints, and have demonstrated computationally that a modification of the

simplex method can be made to take advantage of the fact that non candidate

|.. constraints need not be updated. The method assumes that a non candidate con-

straints at step k will remain so. If an error is made and such a constraint

"- t becomes a candidate at a later step then the constraint is updated and put back

- i=N" ,.. l | I : : - ,I

-8-

into the tableau. Significant computational savings are possible by using this

method. Extensions of the method to find the solution to large problems were

sketched.

I.

-9-

Find S(0); set k 0 .

Find (ij), the maximum z-change (0

pivot in the tableau restricted to S

Pivot on (i,j) in the table i

restricted to the rows in S '. I

Identify the non candidate constraints

in the updated tableau; remove them

from S to get S

PReplaceI
k bykl J Find (ij), the maximum z-changepio

in the tableau restricted to S(k l.

(k) I
Do a partial pivot on b (k) restricted]

to S(k+l) to get b(k+l) and x(k+1). I

Noto see if any constraint Yes 9 Update that

8 in I-S(k) is violated; constraint and

constraint violation put in the current
found? /tableau. Add its

index to S(k)

IF
Figure 1. Flow chart for non candidate simplex algorithm.

* 4r

-10-

Greatest z-change Greatest z-change
non candidate simplex Ratio of

Rows Columns Time (Seco) Tim (Sacs) Times

47 49 3.27 5.19 .63

62 130 14.71 19.57 .75

63 130 16.69 24.69 .67

83 94 17.48 22.67 .77

99 100 20.81 38.34 .54

100 99 13.59 19.68 .69

142 55 10.79 18.67 .58

150 180 66.68 134.25 .50

19 16 .20 .24 .87

20 20 .30 .35 .86

45 120 10.01 11.94 .84

59 92 10.87 12.62 .86

67 132 14.60 19.90 .73

71 40 3.75 5.20 .72

79 100 12.38 19.02 .65

92 74 12.24 18.99 .64

100 87 14.24 24.41 .58

125 70 19.18 33.93 .56

172 26 10.28 16.07 .64

Table 1

Comparison of greatest z-change non candidate

and simplex methods. The sequence of

pivots was the same for both methods, so

that the ratio of times indicates the

relative efficiency of the two methods.

is

S +' *I'. ..

Non Candidate Method Simplex Method Ratios

Candidate
Constraints

Ave.No. Ave Ave. Ave.No. Ave
Rowe Cola Probe Iter. No % Time Iter. Time Iter. Times

20 100 3 25 13.33 .67 1.64 34 1.71 .74 .96

40 100 3 43 20.66 .52 6.31 78 8.82 .55 .72

60 100 2 49.5 20.50 .34 9.56 90 17.42 .55 .55

80 100 1 59 28 .35 16.98 200 56.99 .30 .30

100 100 1 57 26 .26 21.11 95 36.55 .60 .58

150 100 1 68 29 .19 42.94 139 105.31 .49 .41

Problem Set 1. Coefficients were generated at random with 50% positive,

10% negative, and 40% zero.

Non Candidate Method Simplex Method Ratios

Candidate
Constraints

Ave.No. Ave Ave Ave.No. Ave
Rows Cola Probe Iter. No % Time Iter. Time Iter. Times

50 100 3 27 14.7 .49 2.63 42.7 3.55 .63 .74

50 100 2 31 20 .40 5.25 57.5 9.20 .54 .57

90 130 1 58 25 .28 20.22 71 31.75 .80 .67

130 80 1 48 23 .18 24.89 84 48.74 .57 .51

Problem Set 2. Coefficients were generated at random with 65% positive,

15% negative, and 20% zero.

Table 2

Comparison of the greatest z-change non candidate method

, and the simplex method with most negative reduced

cost entry criterion.

I*. 4 ... i . .

-12-

References

(1]. Charnes, A., "Structured Sensitivity Analysis in Linear Progravming and an
Exact Product Form of Inverse," Naval Research Logistic Quarterly,

15 (1958), 517-522.

[2]. Jeroslow, "The Simplex Algorithm with the Pivot Rule of Maximizing Criterion
Improvement," Discrete Mathematics, 4 (1973), 367-377.

[3). Lemke, C., "The Dual Method of Solving the Linear Programing Problems,"
Naval Research Logistics Quarterly, 1 (1954), 36-47-

[4]. Thompson, G. L., S. Tonge and S. Zionts, "Techniques for Removing Non-
Binding Constraints and Extraneous Variables from Linear Programing
Problems," Management Science, 12, (1966), 588-608.

[5]. Wolfe, P. and L. Cutler, "Experiments in Linear Programs (Run 41)" in the
book Recent Advances in Mathematical Programing, edited by R. L.
Graves and P. Wolfe, New York, McGraw Hill, 1963.

[6]. Zionts, S., Linear and Integer Programming, Prentice Hall, New Jersey, 1974.

I.'..

- - **.*. - - * . --. . -

Unclassified
'460s V-AbM41- #.As $Us OF THIS~au PA ins (ft"" 004am#e

REPORT OCCUMENTATION PAGE I 9FR omraFR
iI ni!PO~r NU manaGv CEI W~ .RCPE~~CTI u~

MSR NO. 455 =.GV C~SN WI011TSCT%.GMNUf.. rr d (a" W~ see5 . TYPE or Raftai? a PEtmoD COVERED

TUNO11 CANDIDATE CONSTRAINT METHOD FOR Technical Report
F-ebruary 1983

REDUCING THE SIZE OF A LINEAR PROGRAM .P~rno@Agw UME

~7. iu~R. d. CONTRACT OR 6.ANT NUM1141ejri

Awanti P. Sethi N00014-75-C-0621
G. L. Thompson

0"ENPORMING ORGANIZATION NAME AND ADDRESS Jf~R@GRAMN iSM ~JC ' T ASA
Graduate School of Industrial Administration AEA a WOK UNIT "UNS

Carnegie-Mellon University I I4-4
Pittsburgh, Pennsylvania 15213 . 01

Personnel and Training Research Programs February 1980
Off-ice of Naval Research (Code 458) 13. mumE eqor PAries

#tjjaoj. Virinia ;2217 11
* 4 OIOIGA NCV YAM Is AO015511 difIri..t fin CeuuWibsig Off..) is. SECURITY CLAME (at the.-Vn

(te %!ST*1@Ur1O" STATEMENT Cal *fiI t)

Approved for release; distribution unlimited.

01ISTAi BUT~on STATZidEN T (.a/ the .a mEseled inaio I.. , it. IId1. &et£

.SUPPLiMENTARY psoT9S

It. K EY WOOS (C&..e* do is, ev. *sdo of 066066my AW stiwdr by bIsoo aemo)

simplex method

non candidate constraint simplex method

J0M A8STRACT rCoouffmuaf iwve i.i eeepm ~s s aide n.

A non candidate constraint in a linearyrogram is one which never contain~
a pivot element during the course of solving the problem. Discovering non I
candidate constraints is computationally costly since their discovery, in gen-1

t. jeral, depends on the actual sequence of pivots used. Knowing which constraintfi
are non candidate is of great computational benefit since they need not be kept
in updated form. Our experience indicates that from 50 to 80 percent of the
Contait in randomly problems are non candidates at least part of the time.

DO ~ ~ / 'JA10143 OIIO1G INo O I011 ORT Unclassified

iN, iN 002-14-001SecuSRY CLASIPICATIGN 0P KHIM Ism (z. 3= -**to

Unclassified
. CuLyOASSFIChV1Of TWO ?)u ,ejM.W" Sm Smm"

-I

In this paper we present a "learning" approach to the identification of
non candidate constraints. At each iteration we determine which constraints
can potentially be pivotal; these are candidate constraints and all others arel
non candidate constraints on that step. On proceeding with the siuplex method
we update only the candidate constraints. If a non candidate constraint becomes
candidate on a later step, we update it and add it to the candidate list.

Although the constant checking of constraints to see whether they are
changing from being candidate to non candidate is computationally costly, we
obtain the computational benefit of having to keep in updated form a much *

smaller tableau.

The net benefit of using this strategy is positive and results in
25 to 50 percent rductiLon in tot computation time. This paper descri/bes th

method nddetail and gives computational results of testing it on a series of

randomly generated probloms.

* I

I '
' I

is i

I I

fl..1 n4 04,&A

safar G.MPICAWU OP TWOs **W W am te

- .* -r

